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Abstract 

Under relatively general particle and rocket frame motions, it is shown that, for special 
relativity, the basic concepts can be formulated and the basic properties deduced using 
only arithmetic. Particular attention is directed toward velocity, acceleration, proper 
time, momentum, energy, and 4-vectors in both space-time and Minkowski space, and to 
relativistic generalizations of Newton's second law. The resulting mathematical simplifi- 
cation is not only completely compatible with modern computer technology, but it 
yields dynamical equations that can be solved directly by such computers. Particular 
applications of the numerical equations, which are either Lorentz invariant or are directly 
related to Lorentz-invariant formulas, are made to the study of a relativistic harmonic 
oscillator and to the motion of an electric particle in a magnetic field. 

1. Introduction 

The current availability of high-speed computer technology has motivated 
the study of compatible, arithmetic models (Cadzow, 1970; Greenspan, 1974; 
Mehta, 1967; Miller et al., 1972; Pasta and Ulam, 1959; LaBudde and 
Greenspan, 1974). Recently, for example (Greenspan, 1974s; LaBudde and 
Greenspan, 1974), it has been shown that symmetry and all the conservation 
laws of Newtonian dynamics have an arithmetic basis. The aim of the present 
paper is to show that special relativity also has an arithmetic basis in that 
symmetry, conservation of linear momentum,  conservation of energy, the 
Einstein rest energy equation, and the direct relationship between the displace- 
ment vector and the momentum-energy vector can all be deduced using only 
arithmetic formulas for basic physical quantities. Moreover, we will show 
how to apply the resulting Lorentz invariant numerical formulas to the solu- 
tion of problems that are not solvable by classical mathematical method- 
ology. 

2. Basics 

For simplicity only, let us consider two Euclidean coordinate systems XYZ  
and X ' Y ' Z '  which at some initial time coincide. Let the X'Y 'Z '  system, called 
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the rocket frame, be in constant uniform motion with respect to the XYZ 
frame, called the lab frame. Let this constant relative velocity be u = (ul, us, u3). 

For to = 0, let an observer in the lab frame make observations at the successive 
times &, k = 0,1,2 . . . . .  Using an identical, synchronized clock, let an observer 
in the rocket frame make observations at the times t'k, k = 0 , 1 , 2 , . . . ,  where 
t~ on the rocket clock corresponds to tk on the lab clock. 

If  particle P is at (xk, Yk, zk) in the lab frame at time tk, while it is at (x~, y~, z;~) 
in the rocket frame at time t;~, then we call xk, Yk, zk, tk the space-time co- 
ordinates of  event (x/c, y/c, ztc, t/c) in the tab frame, and, correspondingly, call 
xk, Yk, zk, t/c the space-time coordinates of  event (x/c, y/c, z/c, t;c) in the rocket 
frame. The space-time coordinates of  the lab and the rocket frames are related 
by the Lorentz transformation, which is a linear algebraic relationship given as 
follows. Let 

f3 = (~,, h ,  ~3) = u/c 

u 2 = ul 2 + u2 2 + u d  = c2(~1 ~ + &2 + ~ d )  = c2~ 2 

7 = ( 1  - t32) -1 /2  

(2.1) 

(2.2) 

(2.3) 

where c is the speed of light. Let (x ! 
yk , l y , q  

tk 

(2.4) 

Then the Lorentz transformation ~ = (5¢ij) is given (Arzelies, 1966, p. 74) by 

r~ = f r k  (2.5) 

where 

( ~ i / )  = 

72 7 2 7 2 _ct31y \ 
t + &2 v +---{ &¢~2 "r +----i && ~, +--1 

\ 72 72  ,),2 
~1132 - -  1 +/~22 - -  /32~ 3 - -  ---C/~27 

7 + 1  7 + 1  3,+1 / 3, 2 3, 2 T 2 
~1~3 ~/ +----~ ~2/33 7 +----1 1 +~3 7 +-----] --C(337] 

_ _  & & f317 - - 7  - - 7  
C C C 

(2.6) 

The transformation (2.6) is convenient from the physical point of  view. 
From the geometric point of  view, a more convenient form can be given as 
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follows. Let new coordinates, called Minkowski coordinates (Arzelies, 1966, 
Chap. X) be defined by 

xr,  k = Xk, X2, k = Y~, X3, k = zk, x4, k = ictk 
(2.7) 

t l t v l t t . ! 

X1, k = X k ,  X2, k = Ylc, X3, k = Zk ,  X4, k = tctk 

x2,~ , I X ? , k /  
R/~ x3 ' , 

: 

\x4, \ x4 ,  k, 

then the Lorentz transformation L = (Lq) is given (Arzelies, 1966, p. 74) by 

R;  = LRk (2.9) 

Gi/)  = 

where 

3, 2 7 2 3, 2 

7+1  3,+1 3,+1 
3,2 3,2 3,2 ) ~1~2 - -  1 +~22 - -  ~2~3 - -  i/323, 

3,+1 3,+1 3 ,+I  (2.t0) 
3,2 3,2 3`2 

~1~37~  ~ /J2~3 7 +----" i 1 + [j32 3` +~---~ ~ 3 /  

-i/317 -i~23` -i~33, 

With regard to (2.10), note that 

4 
Li~kj = ~ k (2.11) 

[=1 

4 
L#~ik = ~, k (2. t2) 

i = l  

where 6i, k is the Kronecker 3, and that 

L r L  = L L  T = I (2.13) 

where L T is the transpose of/ ,  and I is the identity. 
Note also that the classical relativistic implications of the Lorentz trans- 

formation, like time dilation and Lorentz contraction, are, of course, valid. 

3. Velocity,  Acceleration,  and Proper Time 

Let the forward difference operator A at time tk be defined as usual by 

A F ( k )  = F ( k  + 1) - F ( k )  
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Assume that particle P is in motion in the lab frame and at time t k is at 
(xk, Yk, zk). Then P's velocity vtc and acceleration ag at time tk are defined by 

vk = / i ~ y ~  

al, 

ak = I '  

i 

=1 ~=,~/ 

\ atk l 

(3.1) 

By the principle of  relativity, P 's  velocity v~ and acceleration a~: in the rocket 
frame at time t~ are defined by 

t 
vk = 

',, \ 
, = I ~y~ I 

,~,~/ \~'~1 

F 

ale = 

'~'V \ \ /  

(3.2) 

The respective magnitudes vk,  v'k, ak, a'k of  vk, v~, ak, a~ are defined in the 
customary way by 

t2 r2 t2  t2  Vl~ = V21, k + V2, k + V2 k , V k = Vl, lc + V2, k + V3, k 

a~ = a~, k ÷ a l  k ÷ ~I k, al ~ = ~'dk ÷ ~;?~ ÷ ~;?~ 

(3.3) 

(3.4) 

The quantity rk, defined in the lab frame by 

rk  = (c2 tg  2 - x g  2 - Y ~  - z l ~ )  112 (3.5) 

is invariant under .~a since 

c2t t 2 r 2 k - x k  - y ~ 2  _ z~2)  = (c2tg2 _ x ~  - y ~  - z 2 )  

When 

c2 t~  - x ~  - y~2 - z d  > o (3.6) 

rk is called the proper time of  event (xk, Yk, zk, ttc), and, throughout,  we assume 
that (3.6) is valid for all k. The quantity 6 r k ,  defined by 

8rk = [c2(Atk) 2 -- (Axk) 2 - (Ayk)2 -- (Ark)2 ] 1/2 (3.7) 
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is, similarly, an invariant o f  ~ and is called the proper t ime between successive 
events (xk, yk ,  zk, tk) and (xk+ l,Yk+ 1,zk+ 1, tk+ 1). Throughout,  we assume 
that, in (3.7), 

C2(Atk)  2 - -  (~kXk) 2 - -  ( A y k ) 2  - -  ( ~ , k )  2 ~> 0 ( 3 . 8 )  

or, equivalently, that v k < c, since (3.8) implies 

Note that 6rk v~ Ark and 6rk ~ drk. For later convenience, observe also that 

8rk = ark [c 2 - rE]  1/2 = at~ [c z ,2 t/2 - vk ] ( 3 . 9 )  

Finally, note that 

, ~ 1 v l ,  k + ~ai2v2, k + ~/3v3, k + ~ ' 4  /" = 1,2,3 (3.10) 
v], k = ~41vl ,  k + Le4zv2,k + ~43v3,k + ~ 4 4 '  

f rom which it follows that v k does not transform into v~ the way r k transforms 
into r~. This is the basis of  the usual statement that v k is a vector in space, but 
not in space-time. 

In Minkowski coordinates, (3.5) can be rewritten as 

4 
rk = ( X [-(x; ,k)2])  ' 2  (3.11) 

i = I  

while (3.7) becomes 

4 
~rk = ( E [ - ( ~ e ,  k) 2] }l/: (3.12) 

i = 1  

and we define 4-velocities, or world velocities, and 4-accelerations, or world 
accelerations, in the following way: In Minkowski space, any quantity that has 
four components and is given in the lab frame by, say, 

W1 

and in the rocket frame by,  say, 

Iwi\ 

\W4/ 

is called a 4-vector if 

w' =Lw (3.13) 
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The prototype 4-vector in Minkowski space is, of course, Rk, given by (2.8). 
Now, suppose particle P is in motion and in the lab frame it is at (xk, Yk, Zk) 

at time t~ while in the rocket frame it is at (x~:,y~, z~) at the corresponding 
time t~:. At time tk in the lab frame, we define P's Minkowski 4-velocity Vk 
and Minkowski 4-acceleration Ak by 

vk = V3, d \ ~  ], Ak 

/ 8-77  
AV2, k 

A2, k t = 8~'k 

! aV3, k 
A3'k / 8rk 

A4 '¢  \Srk\AV4'~J/ 

By the principle of relativity, and recalling that 8~-g is invariant, V;c and A~ 
are defined by 

g 

V 

= 57"k 

Ax:;, k 

~ / 

\ - g C /  

, A~= 

' / ~rk 

Ag2, k 
/12' g ] ~rk 

= AVe, k 

(3.14) 

(3.~5) 

Direct computation with (3.13) reveals easily that both Vk and Ak are 
4-vectors. The relationship between components of vk and the first three 
components of Vk can be established readily from (3.1), (3.9), and (3.14). 
Similar connections can be established between ag and the first three 
components of Ak. 

The magnitude Vk of Vk is defined by 

4 

v~ 2= 2 vj,~k 
j = l  

' 2 An analogous definition holds also for (V~) . Note that (3.12) and (3.16) 
imply 

(3.16) 

V~ = -1  (3.17) 
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Thus, since (3.17) is valid for all k, the concept of 4-velocity, though geomet- 
rically convenient, is more restrictive physically than the three-dimensional 
velocity concept given by (3.1). 

For completeness, let us show finally that 

( G )  2 = (vk)  2 

the validity of which follows since 

4 4 

E (v,!~) 2 = E (~{~)(~:k)  
j= l  j=1 

= 7f.. Lira Vrn, k Ljn Vn, k 
j = l  m =1 n 1 

4 4 

= ~" E ~rnnVm, nVn, k 
m = l  n = l  

4 

= ~ v j ~  
/ = 1  

Note that 4-vectors with respect to space-time coordinates xk, Yk, Zk, tk can 
also be defined easily merely by replacing L with f in (3.13). 

4. Momen tum and Energy 

We proceed now under the assumption that, without the presence of an 
external force, the interaction of two particles conserves linear momentum. 
To be precise, let particle P of mass m be in motion in the lab flame. At time 
tg, the linear momentum Pk of P is defined by 

Pk = mvk (4.1) 

Similarly, in the rocket frame, let 
¢ r 7 

Pk = m Vk (4.2) 

The validity of momentum conservation follows (Taylor and Wheeler, 1966, 
pp. 101-1 t0) if we require that in the lab frame 

cm° (4.3) 

and, at the corresponding time in the rocket frame, 

era° (4.4) r 

m (c 2 _ 4 2 ) 1 / 2  

where m o is a constant called the rest mass of P. 
We continue then by assuming the validity of (4.3) and (4.4). 
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The total energy E of particle P of mass rn is defined by 

E = me 2 (4.5) 

Extensive experimental evidence now exists (Feyman, 1963, p. 15-11) to 
support the validity of (4.5), and the usual formula for rest energy E o = moc 2 
follows readily. 

To establish a relationship between momentum, energy, and rest mass, 
note that (4.1) and (4.3) imply 

Eo 2 = p2c2 + m02c 4 

where Pk is the magnitude of Pk. 

5. The Energy Momentum 4-Vector 

Thus far we have not placed particular emphasis on any special units of 
measurement. In this connection, we will now be relatively more specific in 
the following way. Let 

E* = e l c  2 (5.1) 

be a normalized energy in the sense that the units of E* are units of mass. 
Then, from (4.5) and (5.1), 

E* = m (5.2) 

Our present purpose is to show that the quantity 

mY2, 
mY3, 
E* 

is a 4-vector, called the energy momentum vector, with respect to ~ .  To do 
this observe that, with the help of (3.9), (4.3), and (4.4), one has 

f 

~ vl ' k 
mY2 k 

mv3, k 

\ ' /  

yl' k 
/ ( c 2  cm°Axk k 

cmoAyk 
(c ~ - ~ 2 )  ~i: Ark 

cmo Azk 
(c 2 - ,,17) t/2 Ark 
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c m  \ 

c .  
\ 

| cmo ^ .  ! = | cmo ~ , |  = 

/ \o k / 

and the assertion is proved. 
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6. Dynamics 

Next, we examine possible relativistic extensions of Newton's second law 
and the invariance [called symmetry by some authors, as in Feyman (1963), 
and covariance by others, as in Schwartz (1968)] of such extensions under 
the Lorentz transformation. 

It is an unfortunate mathematical consequence of continuous special 
relativistic theory (Bergmann, 1942, pp. 103-104)that the simple Einstein 
generalization 

d 
F -- d-/(mv) (6.1) 

does not, in general, transform under ~a into 

F' = d ,  (m'v') (6.2) 

although, interestingly enough, if both the particle and the rocket frames move 
in the same direction, then, indeed, does (6.1) transform into (6.2). To resolve 
this failure of the principle of relativity with respect to (6.1), two approaches 
have been followed. First (Arzelies, 1966, p. 268; Schwartz, 1968, p. 63), one 
can proceed under the approximating assumption that if a rocket frame were 
attached to P, so that it can have accelerated motion, and if at time t the 
velocity of P is v, then one can treat the rocket frame at time t as being 
instantaneously in uniform relative motion with velocity v with respect to the 
lab frame. Indeed, such an assumption is tacitly made in the "clock paradox" 
(Arzelies, 1966, p. 63). Second (Bergmann, 1942, pp. 103-104; Muirhead, 1973, 
p. 86; Synge, 1965, pp. 165-167), one can formulate equations of motion 
directly in Minkowski space. 
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To develop the arithmetic analogs of the concepts and results described 

above, we will assume in Minkowski space the dynamical difference equation 

Fk=akmkAk A(~kmk)(Vk+x+Vk-) 
6~" k 2 ' akmk =mo (6.3) 

and in space-time a relative projection (Synge, 1965, p. 167) of the form 

Fk p = c 2 [mkak p - (Amk/~rk)Vk  p] (6.4) 

where c 2 has replaced a k in (6.3), where mass m at time tk is denoted by mk 
for computational convenience, and where the superscript p denotes the 
dropping of the fourth component of the given quantity. Note that (6.3) is 
analogous to the expanded form 

din 
F = m a + v - -  

d t  

of (6.1) except for the sign between the terms. However, one can redefine Vk 
readily to yield agreement of signs also. 

Let us show first that (6.4) is invariant under A z' provided that P and the 
rocket frame have velocities in the same direction. To do this, let us choose 
the lab frame and rocket frame coordinates so that motions are in the X direc- 
tion only. Our problem then is to show that 

F1, k = c 2 [mkA~,k  - (Z~g /~rk )V l ,  k] (6.5) 

and 

F~,k = c 2 [m'kA' l ,k--  (&n~/6zk)V~,  k] (6.6) 

imply that 

Fl, k = Ft, k 

From (6.5), then, 

F1, k = ( c2 /SrD [mkV1, k + 1 - mk  + 1Vl,  k] 

Now, under the present assumptions, (3.9) is valid, that is, 

8r~ = a t k [ c  2 - , ~ ]  1/5 

so that 

cmoAtk  
m k - 

5rlc 

Thus, 

El, k -- & (mkVt, k+ 1 -- tTlk + 1Yl, k) 
k 

_ c2mk [(Z2XXk + 1/6Tk+ 1)(~Tk ÷ 1lArk+ 1)--(~kXk/~Tk)(~Tk/Atk)] 
(~rdatk). ( sr~  + 1/a tk  + 1) zxtk 
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so that 

c2mk AVl, k 

F,, k = [(c 2 _ v~) (c 2 - t~ + 1)1 I/2 Atx (6.7) 

Hence, 
c2mk Avl, k 

/~'1, k = [ ( c 2  __ / )k2) (C2 _ 13/~+ 1)]  112 A t  k 

c3mo Avl, k 
= (¢2 _ ~Z)  (c 2 - ~ + 1) 1/2 Ark 

c3mo Av'l, k 
= (C 2 -- U~:2) (C 2 -- V;C 2 1) I/2 At i 

2 t i c mk AVl, x 
[(c 2 , : ,2 at;~ vk ) (c 2 1)] 1/2 

_ _ vk+ 

= F~, k 

and the invariance is established. 

Note that as Atk -~ 0, (5.7) reduces to the special form 

c2m dv 
F = ~ - v 2  d--t 

of 

d F=~(mv) 
In Minkowski space there is a basic problem in the study of (6.3), which 

will be written now as 

ZXrno (Vk + 1 +Vk) (6.8) 
Fk = t o o &  - ~ 2 

Indeed, equations 0 .7)  and (6.8) constitute nine equations for the eight 
quantities xj, k + 1, D, k + 1, / = 1,2,3,4, a type of complexity which did not 
exist when considering (6.4) in Cartesian three-space (Synge, 1965, p. 166). 
In Minkowski space, then, one is forced to generate another unknown quantity, 
and the only candidate is the rest mass too. So, for the present, we must continue 
under the assumption that m o depends on time through Fk. Under this assump- 
tion, by taking inner products of both sides of (6.8) with ('Ok + 1 + Vk)/2 and 
by using 0.14)  and (3.17), one finds 

Fk "(Vk+ 1 + Vk) - 2 ~ / 0  (Vk + 1 + V]~) " ( vk+ 1 + vk ) ~r k 2 2 (6.9) 



568 DONALD GREENSPAN 

If one then chooses F k in such a manner that 

Fk . (Vk+2 + Vk) = 0 (6.10) 

then, from (6.9), one can always choose Amo = 0. Thus, restricting attention 
to forces which satisfy (6.10) yields 

Fk = moAk (6.11) 

which is covariant under the Lorentz transformation and is completely analogous 
in structure to Newton's equation of motion. 

Condition (6.10) restricts attention to forces that are orthogonal to the 
average velocity of  a particle in motion. In the limit, it requires the force to be 
orthogonal to the particle's instantaneous velocity. This is, of  course, the case 
in the most important application of special relativistic mechanics, that is, to 
the study of the motion of a charged particle in an electromagnetic field. 

Note, also, with regard to (6.11), that for the special case Fk = 0, one has 

so that 

But, (6.13) implies 

Vk+ 1 --Vk = 0 (6.12) 
mo 8rk 

Vk = Vo, k = 0,t,2 . . . .  

R k + l  -- 1 ~ _  Vo,  k = 0 , 1 , 2 , . .  " 
8rk 

(6.13) 

so that 
k - - 1  

~ = ~ + V o  Z arj, 
]=0 

which is lineal in Minkowski space. 

k = 0,1,2 . . . .  

7. Computer Examples 

Consider first a particle P whose motion is one-dimensional, say, along an 
X axis, and is governed by the particular equation 

d 
~(mv)=-x,  t> 0 (7.1) 

In anology with the Newtonian case, where m is constant, P is called a relativ- 
istic harmonic oscillator. We propose to study the initial value problem defined 
by (7.1) and 

x(0) = Xo = 0, v(0) = v o (7.2) 
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To do this, let us first rewrite (7.1) in the equivalent form 

c 2 m  d v  
- - x ,  t >  0 (7.3) 

c 2 - v 2 d t  

Then, for At > 0 and tk = k A t ,  k = 0,1,2 . . . . .  we approximate (7.3) by the 
difference equation 

c 2 m k  V~+l - vk _ 
Xg (7.4) 

[ (  c 2  - v 2 )  ( C2 - v2+ 1)11/2 tk+ t - tk 

which is Lorentz invariant. Lab and rocket calculations are then related by 
(2.5). 

In order to proceed with the computer implementation, let us first simplify 
our formulas by adopting the absolute units m o = e = 1. Using (7.4), we may 
then write the position and velocity formulas in the equivalent forms 

x k  + 1 = x k  + ( A t ) v k  (7.5) 

_ vk - ( A t ) x g ( a  --  v l~)  3/2 [1 + x g 2 & t 2 ( l  - -  vk2)1112 

vk + 1 - 1 +xx2At2(1 -- v2)  2 (7.6) 

and generate the motion recursively from initial conditions (7.2). This was 
clone for 30,000 time steps with At = 10 -4 for each of  the cases v o = 0.001, 
0.01,0.05, 0.1,0.3, 0.5, 0.7, 0.9. The FORTRAN program is given in 
Appendix 1 of  Greenspan (1975) and the total running time on the UNIVAC 
1110 was under 2 min. Figure 1 shows the amplitude and period of  the first 
complete oscillation for the case v o = 0.001. For such a relatively low velocity, 
the oscillator should behave like a Newtonian oscillator, and, indeed, this is 
the case, with the amplitude being 0.001 and, to two decimal places, the 
period being 6.28("2r 0. Subsequent motion of this osciUator continues to 
show almost no change in amplitude or period. At the other extreme, Figure 2 
shows the motion for Vo = 0.9, which is relatively close to the speed of light. 

0.001 

-0.001 

O 

o. 

" ° t  

" ' - ° °  . . .o°"  
°. . . . .  °°° 

i o n '  ) -  t 

Figure 1 
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1.5 

1.0 

-1 .0  

-1•5 

• ° 

• ° 

o 

o 

2 4 • ; 8 

- , ° °  

Figure 2 

To two decimal places, the amplitude of the first oscillation is 1.61 while the 
period is 8.88. These results are distinctly non-Newtonian, and to 30,000 time 
steps, these results remain constant to two decimal places but do show small 
increments in the third decimal place. Finally, in Figure 3 is shown how the 
amplitude of a relativistic oscillator deviates from that of a Newtonian 
oscillator with increasing v o. 

We next turn to motion in more than one dimension. Consider, in particular, 
the motion of an electric charge ~ moving in the X - Y  plane under the influence 
of a magnetic field which acts in the direction of the Z axis. Assume that in the 
X - Y  plane the force acting on the charge is 

F = (eHvy, - eHvx) (7.7) 

where v is the speed of the charge and H is the intensity of the field• The 
relativistic differential equations of motion are 

d 
d--[ (mvx) = eHvy (7.8) 

d 
d-t (rnvy) = -.eHvx (7.9) 
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Amplitude of the 
first oscillation 
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1.6 

1.4 

1.2 

1.0 Relativistic case 

0.8 

0.6 

Newtonian case 

0.4 

0.2 

t , ~ * ~ ' ~ 0  

0.2 0.4 0.6 0.8 1.0 

Figure 3 

I f H  is uni form,  then (7.8) and (7.9) can be solved analyt ical ly (Synge,  1965, 
p. 171) to yield circular mot ion .  I f H  is no t  un i form,  then,  in general, (7.8) and 
(7.9) cannot  be solved analytical ly.  

Using absolute  units m o = c = e = 1, let  us begin wi th  the  general numerical  
approximat ions  

mk ~;k + 1,  x - -  V k ,  x 

Fk, x = [(1 - Vk2) (1 -- v 2 + 1 ) ]  1/2 Ark ' 

mk vk + 1, y -- Vk,__y 
Fk, y = [(t - vk 2) (1 -- v~ + 1)] I/2 Atk 
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or, equivalently, 

V k +  1 , x  - -  Vk, x 

F k ' x  = Ark(1 -- v 2 )  (1 -- v~+ 1) x~" 

where, of course, 

xk+t  =xk + Vk, x A t k ,  

D O N A L D  G R E E N S P A N  

Vk+ l , y  - -  Vk, y 

Fk,  y = A t k (  1 --  v 2 )  (1 --  v 2 + I) 1/2 

(7.10) 

Y k  + l = Y k  +Vk,  y A t k  (7.11) 

Then (7.7) and (7.10) yield the following approximations of  (7.8) and (7.9): 

vk + 1,x - -  Vk, x - HVk,  y (1  - -  V~,x - V~, y )  (1 - v~+ 1,x - v~  + l, y) l/2 Atk  = 0 

(7.12) 

v , , +  , , , ,  - + H , , k ,  - v ,  L ,  - y )  ( 1  - - , ,  = 0 

(7.13) 

From (7.10), (7.12), and (7A 3), one can construct/eadily, as described in 
Section 6, a related 4-force and a related set of Lorentz invariant dynamical 
difference equations in Minkowski *space. The numerical computations, 
however, are done more simply in Cartesian space using (7.11)-(7.13), so we 
continue to concentrate on these. 

Let us consider the particular initial conditions 

Xo =Yo = Vo, x = 0, Vo, y = 0.01 (7.14) 

For the parameter choices At = 0.0001 and H = 100, Figure 4 shows the 
resulting circular trajectory T 1 with center at (0.0001,0), radius r = 0.0001, 
and period r = 0.063, in complete agreement with the analytical solution 
(Synge, 1965, p. 171). Equations (7.12) and (7.13) are solved at each step by 
Newton's method with the velocity components at the previous time step 
being used to initiate the iteration. A comprehensive FORTRAN program for 
this example and for the one that follows is given in Appendix 2 of Greenspan 
(1975). 

Consider next the initial value problem defined by (7.11)-(7.14), but in a 
nonuniform magnetic field with a " l / r  2" intensity given by 

100 
a > 0 (7.15) 

H =  1 + ~(x 2 +y2)'  

Of course, for ~t = 0, (7.15) reduces to the uniform case above, where H = 100. 
For the parameter choices At = 0.0001 and ~t = 107, the resulting particle 
trajectory 7"2 is shown also in Figure 4. The particle motion is initially similar 
to the circular motion of the first example, but as (x 2 +y2) increases and 
decreases, the varying effect of H results in the spiral type motion shown up to 
t = 0.2 in the figure. 

Increasing the input parameter Vo, y in both the above examples reveals 
quickly the price being paid for computational Lorentz invariance, for the 
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numerical formulas being used are o f  relatively low order and suffer from 
the usual shortcomings of  such formulas. Thus, increasing vo, y to 0.1 in (7.14) 
results in having to reduce At to 10 -7 to obtain reasonable accuracy on the 
UNIVAC 1110. Also, even for initial data (7.14), extended calculations with 
At = 0.0001 yield the inevitable, relatively large error accumulation associated 
with low-order methods. A most interesting and relevant question, then, which 
remains unanswered as yet, is whether or not there exist higher-order, Lorentz 
invariant numerical formulas. 
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